Generating Diverse High-Fidelity Images with
VQ-VAE-2

Ben Zhang

ML Reading Group

Introduction

Generative models have been making noise in the news.

- GPT2
- DeepFakes

- Facial Image Synthesis

Neural Discrete Representation Learning,

Razavi et. AL (NIPS 2018)

Generating Diverse High-Fidelity Images with VQ-VAE-2,
Razavi et. Al (Arxiv Preprint)

VQ-VAE-2 is a image synthesis model based on Variational
Autoencoders.

It produces images that are high quality, comparable (FID/Inception)
or perhaps better (CAS) than the state of the art model: BigGAN (ICLR
2019), which is a Google project that scaled up existing GAN
architecture with TPUs and tons of compute.

n

(O}

O
i

o

L

<

=

g
>

Table of contents

1. Generative Models

2. GANs

3. VAEs

4. Vector Quantized VAEs
5. VQ-VAE-2

6. Results

Generative Models

Generative Models

The Problem: Instead of performing classification or regression, we
want to generate data from a distribution.

- Density Estimation: Learn the underlying density function of the
sample data.

- Sample Generation: Sample points from the underlying density
function.

Generative Models

Implicit Generative Model

- No explicit distribution is
learned.

- Eg. GANs

- (+): Really really good at
producing realistic samples.

- (-): Difficult to converge, due
to lack of metric. Optimizes
for a minimax objective.

- (-): Low sample diversity due
to mode collapse.

Implicit vs Explicit distributions Models

Explicit Generative model
- Explicit posterior distribution

is learned.

- Eg. VAES
- (+): Explicit metric for

performance (log-likelihood)
- therefore easier to train.

- (-): In the case of image

synthesis, outputs are often
blurry.

GANs

Overview

. =
"=l

Generator rele mage

Generative Adversarial Networks

Two players (Neural Networks) that are adversarial to each other.

- The Discriminator, D: A classifier which takes a data point, and
determines whether it is generated by G, or drawn from the true
distribution.

- The Generator, G: generates adversarial examples from the
sample distribution against the discriminator.

Example: Counterfeit Money vs Police

Consider this analogy in the real world.

- Counterfeiters create fake coins that try to look as real as
possible.

- Police try to determine whether coins are real or fake.

- The two entities learn from each other, producing better coins,
and better detectors.

What does this model converge to?

1

Generator & Discriminator

G :Z — X, where Z is the latent domain, for example Z := [0,1]°.

G is the generator network, which takes some random noise z € Z
and produced G(z) € X, a "synthetic data point”. If X is the domain of
pictures then G(z) would be a generated picture.

D: X — {0,1}, where is a neural network which takes in a data point
from the domain X and determines whether it is real or not.

D is trained such that it maximizes the probability of labelling the
inputs correctly. Its objective is to maximize:

J0) — Ex~prea () [108 D(X)] + Ezp,) [log(1 — D(G(2)))]

G has the exact opposite objective function, though many variants
exist.

Minimax

Then, training the two models together, we have the following
minimax value function:

mGin max V(D, G) = Eyepyue () [108 D(X)] + Ezp,([log(1 — D(G(2)))] (1)

Note that the order matters!

min max V(D,G) # max min V(D, G)

In the paper that first introduced GANSs, it was shown that this
optimization objective is equivalent to minimizing the
Jenson-Shannon divergence of the generator’s distribution, and the
true distribution.

A Diagram

@ (b) © ()

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p, from those of the generative distribution p, (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of 2. The upward arrows show how the mapping & = G(z) imposes the non-uniform distribution py on
transformed samples. G contracts in regions of high density and expands in regions of low density of py. (a)
Consider an adversarial pair near convergence: pg is similar to pew and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D* () =
ﬁ%. (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G’ and D have enough capacity, they will reach a
point at which both cannot improve because py = pgan. The discriminator is unable to differentiate between
the two distributions, i.e. D(z) = 1.

14

The Original Algorithm

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k& = 1, the least expensive option, in our
experiments.
for number of training iterations do
for k steps do

o Sample minibatch of m noise samples {z(V), ..., 2(™)} from noise prior p,(z).

e Sample minibatch of m examples {z(),...,x(™} from data generating distribution

Pdam(ﬂi)-

o Update the discriminator by ascending its stochastic gradient:

v%i [log D (29) +10g (1~ D (& (=0)))].

end for
 Sample minibatch of m noise samples {z(1), ..., (™)} from noise prior p, ().
e Update the generator by descending its stochastic gradient:

vgg%g;mg (1-p(c(=9))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Issue: Mode Collapse, Low sample diversity.

Consider a bi-modal distribution: images that are mostly red or
images that are mostly blue.

At any one point in the training, the Generator may simply attempt to
generate samples that are either blue, or red - but never both. This
is because the Generator is not incentivized to output diverse
samples, only to fool the discriminator.

As a result, our generator will only output blue images or red images,
leading to bad sample diversity.

Figure 2: (a) The effects of increasing truncation. From left to right, the threshold is set to 2, 1, 0.5,
0.04. (b) Saturation artifacts from applying truncation to a poorly conditioned model.

16

VAEs

Autoencoders

encoder

decoder

output
-7
- -)
!
!
'
!
I
I
vy
s ,
n X

Autoencoders

- Learns an low dimensional latent embedding of high
dimensional data by attempting to reconstruct the high
dimensional data after compressing it.

- Comparable to other dimensionality reduction technique, such
as PCA. However, encoder and decoder can both be deep neural
networks (non-linear).

- Contains 2 components: encoder and decoder.

Variational Autoencoders (2013)

- Instead of learning a latent space, we instead learn a latent
distribution - from which we can sample latent vectors.

- Encoder no longer outputs a single latent vector z, but rather a
distribution from which many z's can be sampled. For example,
if we assume Gaussian latent distribution, the encoder takes x
and outputs u; and o,. We can denote the encoder as the
distribution gy (z|x).

- Decoder will take a sampled z = p, + € x o, where e ~ N(0, 1) and
outputs a distribution for x. We can denote the decoder as the
distribution p,(x|z).

19

VAE loss function

- Has an explicit loss function: negative ELBO (Evidence Lower
Bound). Evidence == Marginal likelihood.

- For datapoint x;, loss is:

(0,) = =Bz (2l llog Py (Xi|2)] +-KL(q6 (2]X:)|IP(2)) = — log po(xi)

- The first part is known as the reconstruction loss. It maximizes
the log likelihood of the posterior distribution.

- The second part is the regularization term. It minimizes the
encoder distribution and the prior latent distribution, such that
the encoder will learn to converge to the prior.

- This value is a bound on the evidence, log p(x) - proven with
Jensen'’s Inequality.

20

Generating synthetic data with VAEs

You probably know that

p(x,2) = p(2) = p(x|2)
. We have the decoder to give us p(x|z), so we can generate x given z.
But what is our choice of prior, p(2)?

In many cases, it is chosen to be a spherical Gaussian distribution. It
is up to the encoder to recognize this as the true latent prior, and
thus map x accordingly into the latent space.

Therefore, we can easily generate synthetic data with VAEs.

In conclusion, VAEs have 3 parts: Encoder, Decoder, Prior.

21

Issue: VAEs Generate Blurry Images

- Since the prior latent distribution is normal, there is a lot of
noise when images are generated.

- This noise introduces blurriness when VAEs are tasked with
image synthesis.

Figure 1: Comparison of reconstructed images from the CelebA dataset. The first row is the input
images in the CelebA training set. The second row is the reconstructed images generated by the
original VAE. The third and fourth rows are the results of deep residual VAE and multi-stage VAE,
respectively.

22

Vector Quantized VAEs

PixelCNN

- Autoregressive model, that takes in a latent vector (or any
conditional vector) as input, and produces a distribution over
images. Used as the decoder for VQ-VAE.

- PixelCNN can perform conditioned image generation based on
the latent vector it receives as input.

- In VQ-VAE, they assume the prior distribution p(z) is simply a
uniform categorical distribution - all codewords are equally
likely. To condition the generated output, they encode the
"query”, and feed the output to the PixelCNN decoder.

23

Issue: Posterior Collapse

- PixelCNN is a powerful model that can capture a lot of
complexity in its distribution. While this is great for generating
high quality samples, a problem arises when using it for a VAE
decoder: Posterior Collapse.

- If the decoder is too powerful, it may just ignore the latent
variables. This happens when the decoder can take the
reconstruction loss to be incredibly small, such that the
regularization term dominates the loss function. In such a case,
the encoder will learn to reduce the regularization term, and
produce meaningless latents to match p(z) = N(0,1).

- Vector Quantization is meant to address this problem.

24

Vector Quantization

Instead of a continuous latent space, we restrict the set of all latent
vectors to be in a discrete set of "codewords” (think Coding Theory).

When considering a latent vector not in the codeword set, it is
"discretized” by converting it to its nearest neighbour in the
codeword set.

The set of codewords is also learned, and are included in the loss
function:

L = log p(x|zq(x)) + [Isglze(x)] - ellz + Bllze(x) = sglelll3

Here, zo(x) is the encoder output. Codewords are incentivized to
move closer to the encoded latent vector.

By fixing the latent space to be discrete, the Encoder can no longer
choose to encode 0 information in order to minimize the

regularization term.
25

Embedding
Space

2,08 VL
R s

o VL / z,(x)
— - e,
> 2
& a(zx), \\7 8 £ CNN
: L 4 plz,)
3 L2 -
z,(x) 2 2 z,(x) 2K - ol
53
Encoder Decoder

26

VQ-VAE Results

Figure 2: Left: ImageNet 128x128x3 images, right: reconstructions from a VQ-VAE with a 32x32x1
latent space, with K=512.

- Does not suffer from posterior collapse when using PixelCNN as
decoders in the way that vanilla VAEs do, since the prior
distribution is a uniform sample over a discrete space.

27

VQ-VAE speech results

Figure 6: Left: original waveform, middle: reconstructed with same speaker-id, right: reconstructed
with different speaker-id. The contents of the three waveforms are the same.

- When trained on raw speech data using WaveNet as a decoder,
the encoder still provided a representative latent space, from
which VQ-VAE was able to learn phonemes from speech alone in
its latent space.

- By attempting to lower the dimensionality of the latent space,
various speech textures disappear, but the essence of the text
remains until the latent space is 128x lower in dimensionality.

- It does this unsupervised on a downstream task.

28

VQ-VAE-2

Changes from original VQ-VAE

- Hierarchical latent spaces

- Learned priors, instead of uniform distribution.

29

VQ-VAE-2

VQ-VAE Encoder and Decoder Training

Original Reconsiruction

(a) Overview of the architecture of our hierarchical
VQ-VAE. The encoders and decoders consist of
deep neural networks. The input to the model is a
256 x 256 image that is compressed to quantized
latent maps of size 64 x 64 and 32 x 32 for the
bottom and rop levels, respectively. The decoder
reconstructs the image from the two latent maps.

Image Generation

By ———

{ Condition
W

E o

l Decoder

Generation

(b) Multi-stage image generation. The top-level
PixelCNN prior is conditioned on the class label,
the bottom level PixelCNN is conditioned on the
class label as well as the first level code. Thanks
to the feed-forward decoder, the mapping between
latents to pixels is fast. (The example image with
a parrot is generated with this model).

Figure 2: VQ-VAE architecture.

30

VQ-VAE-2: Hierarchical Latents

hiop hiop; Rimiadie Puops Pmiddle, Pbottom Original

Figure 3: Reconstructions from a hierarchical VQ-VAE with three latent maps (top, middle, bottom).
The rightmost image is the original. Each latent map adds extra detail to the reconstruction. These
latent maps are approximately 3072x, 768x, 192x times smaller than the original image (respectively).

31

VQ-VAE-2: Learning Priors

Algorithm 1 VQ-VAE training (stage 1) Algorithm 2 Prior training (stage 2)

Require: Functions Eyop , Evotioms Dy X 1t Tyop, Toottom < 0 > training set
(batch of training images) 2: for x € training set do
1: hygp ¢ Biop(x) 3: €j0p — Quantize(Eyqp,(x))
4 €pottom < Quantize(Epottom (X, €top))
> quantize with top codebook eq 1 5: Tiop ¢ Tiop U etop
2 eyop — Quantize(hy,) 6: Thottom < Thottom U €bottom
7: end for
3t hyottom — Ebottom (X, €top) 8: prop = TrainPixelCNN(T,,,)
9: Phottom = TrainCondPixelCNN(Tbottom, Trop)
> quantize with bottom codebook eq 1
4 epottom — Quantize(hportom) > Sampling procedure
10: while true do
50 X D(etop, €bottom) 11: €top ™~ Dtop
12: €bottom ~ Dbottom (€top)
> Loss according to eq 2 13 X — D(etop, €potiom)
6: 0 < Update(L(x,%)) 14: end while

32

Results

Great Sample Diversity (compared to BigGAN)

'VQ-VAE (Proposed) BigGAN deep

Figure 5: Sample diversity comparison for the proposed method and BigGan Deep for Tinca-Tinca
(1st ImageNet class) and Ostrich (10th ImageNet class). BigGAN samples were taken with the
truncation level 1.0, to yield its maximum diversity. There are several kinds of samples such as top
view of the fish or different kinds of poses such as a close up ostrich absent from BigGAN’s samples.
Please zoom into the pdf version for more details and refer to the Supplementary material for diversity
comparison on more classes. s 33

	Generative Models
	GANs
	VAEs
	Vector Quantized VAEs
	VQ-VAE-2
	Results

