Landmark Papers of the 2010s

Brief Primer to Modern Deep Learning

Ben Zhang
February 5th, 2020

UWDSC Reading Group

Introduction

® deep learning ® machine learning
Search term Search term

+ Add comparison

United States v 2004 - present ¥ Allcategories ¥ Web Search ¥

Interest over time

J e Rote

A timeline of DL innovation

- 1812: Bayes' Theorem

- 1913: Markov Chains

- 1957: Perceptrons (early 1 layer neural network)
- 1982: Recurrent Neural Networks (Hopfield)

- 1986: Backpropogation

- 1989: Reinforcement Learning

- 1995: Convolutional Neural Networks

- 1997: LSTMs

- 2004: Deep Belief Networks

- 2006: Autoencoders

Around 2005 marks the end of the Al winter - into the golden age!

Papers We Will Look At Today

1. ImageNet Classification with Deep Convolutional Neural
Networks,
Krizhevsky, et. Al (NIPS 2012)

2. Generative Adversarial Networks,
Goodfellow et. Al (NIPS 2014)

3. Adam: A Method for Stochastic Optimization,
Kingma et. Al (ICLR 2015)

4. Mastering the game of Go with Deep Neural Networks & Tree
Search,
Deepmind (Nature 2016)

5. Attention Is All You Need,
Vaswani et. Al (2017)

AlexNet

AlexNet (2012)

ImageNet Classification with Deep Convolutional

Neural Networks
Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto

kriz@ecs.utoronto.ca ilya@cs.utoronto.ca hinton@cs.utoronto.ca

The dawn of a new era for computer vision.

ImageNet

A 10+ million image dataset released in 2009, organized by the
Stanford Vision Lab. Pictures of objects tagged with a WordMap -
contains hundreds of pictures per word class.

ILSVRC

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is a
challenge hosted by ImageNet each year, which usually features
some image classification challenge. It is the Olympics of Computer
Vision.

- 1000 classes

- 1.2 million training images (256 by 256 pixels cropped from
ImageNet).

- 50K validation set, 150K test set.

- Labelled with Mechanical Turk.

AlexNet (2012)

A deep convolutional neural network model trained on GPUs! While
not the first deep CNN, see: LeNet-5 (LeCun, 1998), this result was
such a breakthrough that it propelled CNNs' popularity into every
single computer vision task.

They were the winning submission to the ILSVRC 2012 competition!
Shattered the previous state of the art image classification
benchmarks.

- ILSVRC 2012 Top-5 error rate of 15%, compared to runner-up 26%.

AlexNet Classification

I
fire engine || dead-man's-fingers

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with ared bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

AlexNet Innovations

- Deeeeeep Learning.
- GPU for training.
- RelU:
- Faster convergence compared to saturating non-linearity.
- Dropout:
- Less overfitting
- Overlap pooling
- Stochastic batch gradient descent - fixed weight decay and
momentum for optimizer.
- Trained on two GTX580 GPUs for about a week!

Architecture

048 \dense

128

a

128 Max 2048
Max 128 Max pooling 2048
pooling pooling

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and

the number of neurons in the network’s remaining layers is given by 253,440-186,624—64,896-64,896—43,264—
4096-4096-1000.

The split in this diagram denotes the split between the two GPUs.

Architecture

- Input: (224, 224, 3) dimensional vector.
- 8 layers: 5 convolutional layers + 3 fully connected layers.
- Number of kernels per layer: 96, 256, 384, 384, 256.

- Dimensions of kernels per layer:
(M, 11, 3), (5, 5, 48), (3, 3, 256), (3, 3, 192), (3, 3, 192)

- Fully connected layer units: 4096, 4096, 1000.
- In total, 660K units, 61M parameters, and over 600M connections.

Today, we can reduce the number of parameters in AlexNet by 10x
and reach same accuracy.

1

Convolutional Kernels

Example filters learned by Krizhevsky et al. Each of the 96 filters shown here is of size [11x11x3], and each one is shared by the
55*55 neurons in one depth slice. Notice that the parameter sharing assumption is relatively reasonable: If detecting a
horizontal edge is important at some location in the image, it should intuitively be useful at some other location as well due to
the translationally-invariant structure of images. There is therefore no need to relearn to detect a horizontal edge at every one of
the 55*55 distinct locations in the Conv layer output volume.

Successors to AlexNet

- VGG-16 and VGG-19
- GoogleNet

- ResNet

- Winner of ILSVRC 2015

- Skip layer allows for super deep models without overfitting.
- 152 layer version submitted for competition.

- 3.7% top-5 error rate for ImageNet Classification.

Progress

ImageNet competition results

054 ©
0.4
o
Q
o
o
Lo3 °
e
5 |o 8
£
w
0.2
8
o 8
0.1 8
E [}
0.0
2011 2012 2013 2014 2015 2016

Year

14

Generative Adversarial Networks

Generative Adversarial Nets (2014)

Generative Adversarial Nets

Ian J. Goodfellow; Jean Pouget-Abadie] Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair} Aaron Courville, Yoshua Bengio®
Département d’informatique et de recherche opérationnelle
Université de Montréal
Montréal, QC H3C 3J7

"The most exciting idea in Deep Learning in decades.” — Yann LeCun

Generative Models

The Problem: Instead of performing classification or regression, we
want to generate data from a distribution.

- Density Estimation: Learn the underlying density function of the
sample data.

- Sample Generation: Sample points from the underlying density
function.

16

Generative Models

Overview

. =
"=l

Generator rele mage

Generative Adversarial Networks

Two players (Neural Networks) that are adversarial to each other.

- The Discriminator, D: A classifier which takes a data point, and
determines whether it is generated by G, or drawn from the true
distribution.

- The Generator, G: generates adversarial examples from the
sample distribution against the discriminator.

19

Example: Counterfeit Money vs Police

Consider this analogy in the real world.

- Counterfeiters create fake coins that try to look as real as
possible.

- Police try to determine whether coins are real or fake.

- The two entities learn from each other, producing better coins,
and better detectors.

What does this model converge to?

20

Overview

. =
"=l

Generator rele mage

21

Discriminator

D: X — {0,1}, where is a neural network which takes in a data point
from the domain X and determines whether it is real or not.

D is trained such that it maximizes the probability of labelling the
inputs correctly. Its objective is to maximize:

Exmpioro () [108 D(X)] + Ezop,) [log (1 — D(G(2)))]
Equivalently, we can set the loss function to be:

J0) — —Expua () [108 D(X)] — E,p,(2)[log(1 — D(G(2)))]

This is the Jenson-Shannon divergence of the true distribution and
G(2).

22

Generator

G :Z — X, where Z is the latent domain, for example Z := [0,1]°.

G is the generator network, which takes some random noise z € Z
and produced G(z) € X, a "fake data point”. If X is the domain of
pictures then G(z) would be a generated picture.

During training, we want G to minimize D's accuracy when it comes to
generated samples. Its objective function is:

J©) = log(1 — D(G(2)))

There are a lot of variations that produce similar optimal values, with
stronger gradients, eg.

J©) — O

23

While many examples of GANs treat the z vector that is inputted into
G as a random vector, we can consider it as a latent space.

Specifically, we can perform arithmetic on the latent space vectors.
Thus, we can see Z as a low dimensional latent representation of X
where important features are preserved on linear relations.

>
Man

Man

with glasses

Woman with Glasses

(Radford et al, 2015) .

Minimax

Then, training the two models together, we have the following
minimax value function:

mGin méax V(D,G) = IEXdiam(X)[Iog D(X)] + IEZNDZ(Z)[IogU —D(G(2)))] (1)

Note that the order matters!

min max V(D,G) # max min V(D, G)

The latter suffers from mode collapse: all mass converges to the
most likely point.

25

A Diagram

@ (b) © ()

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p, from those of the generative distribution p, (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of 2. The upward arrows show how the mapping & = G(z) imposes the non-uniform distribution py on
transformed samples. G contracts in regions of high density and expands in regions of low density of py. (a)
Consider an adversarial pair near convergence: pg is similar to pew and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D* () =
ﬁ%. (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G’ and D have enough capacity, they will reach a
point at which both cannot improve because py = pgan. The discriminator is unable to differentiate between
the two distributions, i.e. D(z) = 1.

26

The Original Algorithm

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k& = 1, the least expensive option, in our
experiments.
for number of training iterations do
for k steps do

o Sample minibatch of m noise samples {z(V), ..., 2(™)} from noise prior p,(z).

e Sample minibatch of m examples {z(),...,x(™} from data generating distribution

Pdam(ﬂi)-

o Update the discriminator by ascending its stochastic gradient:

v%i [log D (29) +10g (1~ D (& (=0)))].

end for
 Sample minibatch of m noise samples {z(1), ..., (™)} from noise prior p, ().
e Update the generator by descending its stochastic gradient:

vgg%g;mg (1-p(c(=9))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

27

The Optimal Discriminator

For a fixed G, the optimal discriminator is:

© o pdata(x)
D700 = Pdata(X) + Pmodet(X)

An intuitive result, but proven in the paper.

Then, the optimal point for our GAN is achieved when minimizing
c(6) =

Pdata(X)] [Prmodel(X)
+E,. lo
pdata(x) + pmodel(x) e pee) - pdata(X) + pmodel(X)

]EX’\‘pduta (X) IOg

28

Equivalence of C(G) with Jenson-Shannon divergence

With a bit of algebra, we can show that C(G)
pdata(x) :|

N lo
X pdam(x) |: € pdata (X) + pmodel (X)
+ EZNPZ(Z) |:|0g pmodel(X) :|

Pdata (X) + pmodel(x)

— log(4) + KL (pdam I Pmdel;”dam) K (pmode, I W)

= — Iog(4) + 2 % fS(Pdata H pmodel)

Since the Jenson-Shannon divergence is always non-negative, and
only zero of Pyata = Pmoder, it follows that the optimal value exists
only when Pdata = Pmodel-

This is an elegant proof of this fact: at the optimal value, assuming
perfect training, the GAN will converge to a perfect generator that is
indistinguishable from the true distribution.

29

Conditional GANs

CGAN @ |

w

-

- Instead of only z, we also pass in an auxiliary information into G
and D.

- For example, we can pass in the class label.

30

Text to Image Generation with Conditional GANs

From Generative Adversarial Text to Image Synthesis, Reed et. Al 2016.

This flower has small, round violet N This flower has small, round violet
petals with a dark purple center B 5§ petals with a dark purple center

Generator Network Discriminator Network

31

Generating Faces with DC-GANs, NVIDIA

Latent z € Z Latent z € Z . Noise
Synthesis network g
[Normalize | [Normalize |
Mapping
Fully-connected network f 2
]
Conv 3x3 | FC |
| PixelNorm | | FC |
axa
Y
Uésamﬁle I FC
[Convix3 | | FC |

PixelNorm

8x8
32

%)
(O]
O
(4]
L
n
=
<C
<
O
(]

33

Adam: A Method for Stochastic
Optimization

Adam (2014)

ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION

Diederik P. Kingma” Jimmy Lei Ba*
University of Amsterdam, OpenAl University of Toronto
dpkingma@openai.com jimmy@psi.utoronto.ca

The most popular optimization solver today.

34

What are Optimization Algorithms?

- Machine Learning is very concerned with a specific problem:
given a function f: S — R, find argges min f(0).

- The fthat Machine Learning practitioners want to optimize is the
loss function.

- Often, we can make assumptions about f: eg. fis continuous, f is
convex, fis analytic. There are entire CO courses dedicated to
optimization under assumptions.

- Finally, sometimes, there is an analytic solution. Example:

0=(X"X)""XTy

35

What are Optimization Algorithms?

- In Deep Learning, there is almost never ever an analytic
solution. Functions defined by neural networks are far too
complex, and the manifolds are wacky.

- Instead, we try to find a solution using numerical methods -
algorithms that try to approximate the minimum through a
systematic convergence test.

- The most famous class of numerical methods is Gradient
Descent.

36

Gradient Descent

Algorithm 1 Gradient Descent
1: Guess x(©, set k + 0

2. while ||[Vf(x®)|| > e do

3 x(H1) = x®) _ 4, 7 f(x*))
4 k—k+1
5:
6:

: end while
: return x(®)

fx)

R Sui
1 ll

X0 x) x)

fix) Vfiz)

37

Gradient Descent

\
[STARTING POINT Big learning rate Small learning rate

The learning rate o matters a lot on whether gradient descent
converges.

38

What is Adam?

Adam combines two existing concepts:

- Momentum
- RMSProp

Momentum)))
Instead of using just the gradient, instead, use an exponentially

weighted moving average (EWMA) of your last few gradients.

RMSProp)) ' .
Keep weights for components of direction, and re-weight gradient

component-wise based on square root of second derivative.

39

Momentum

Gradient descent example @

£ sloser Vo

\M N\i\ Lagn O—od’u— \4""“(
duaken
On Tt € —>

Q,frl’v_, »\Q, AL on Garek wini-bookl, .

Vaos Blas ¢ U— RUSTIURN (BAT
Uae = BV, « (\-ffdk
Lackien T u._\uu\,), < accelenter

bo= 13- Vaw |, oz o-dVay

40

Root Mean Squared Prop

RMSprop]

(file——_> >
=~

On teokin €0 /\ /‘\I\/\'\M

Compete W& oa C,urv\i i -botd,

ek e
Siw = Qa e * QMEW) < cnaly
- gi\" :Pzg&, x L_@g—\\ié/\w

> w—é&be \o:=\o-oka‘\°?

A San <~

®/\

S <

41

Adam Algorithm

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g7 indicates the elementwise
square g; © g¢. Good default settings for the tested machine learning problems are o« = 0.001,
B1 = 0.9, B2 = 0.999 and ¢ = 10~8. All operations on vectors are element-wise. With 3% and 3%
we denote f3; and 3, to the power t.
Require: o: Stepsize
Require: (1, ; € [0,1): Exponential decay rates for the moment estimates
Require: f(6): Stochastic objective function with parameters 6
Require: 6: Initial parameter vector
mg < 0 (Initialize 1% moment vector)
vo ¢ 0 (Initialize 2" moment vector)
t < 0 (Initialize timestep)
while 6, not converged do
te—t+1
gt < Vo fi(0:—1) (Get gradients w.r.t. stochastic objective at timestep t)
my < B1-my—1 + (1 — B1) - g« (Update biased first moment estimate)
vy < Bo - vs_1 + (1 — B2) - g7 (Update biased second raw moment estimate)
My < my/(1 — B%) (Compute bias-corrected first moment estimate)
B < vi/(1 — B5) (Compute bias-corrected second raw moment estimate)
0; < 0;—1 — a - My /(v/0; + €) (Update parameters)
end while
return 6, (Resulting parameters)

42

Results

Faster convergence for loss functions during training, saving time

ST e
107 MNIST Multilayer Neural Network + dropout
\ — AdaGrad
— RMSProp
~—— SGDNesterov

AdaDelta

training cost

Pl |
el |
Pty

100 1
iterations over entire dataset

@ ®)
Figure 2: Training of multilayer neural networks on MNIST images. (a) Neural networks using

dropout stochastic regularization. (b) Neural networks with deterministic cost function. We compare
with the sum-of-functions (SFO) optimizer (Sohl-Dickstein et al., 2014)

43

More results

N CIFAR10 ConvNet First 3 Epoches CIFAR10 ConvNet
— AdaGrad 10 ; — AdaGrad
— AdaGrad+dropout — AdaGrad+dropout
— SGDNesterov — SGDNesterov
25 i SGDNesterov-+dropout| 1ot SGDNesterov-+dropout|
~—— Adam ~—— Adam
Adam-+dropout Adam-+dropout
» L e
g g
10?
10?
N 05 10 15 2.0 25 30 10 510 15 20 25 30 35 40 45
iterations over entire dataset iterations over entire dataset

Figure 3: Convolutional neural networks training cost. (left) Training cost for the first three epochs.
(right) Training cost over 45 epochs. CIFAR-10 with c64-c64-c128-1000 architecture.

I

AlphaGo

AlphaGo

Mastering the game of Go with deep
neural networks and tree search

David Silver'*, Aja Huang'*, Chris J. Maddison', Arthur Guez', Laurent Sifre!, George van den Driessche',

Julian Schrittwieser!, loannis Antonoglou', Veda Panneershelvam', Marc Lanctot', Sander Dieleman', Dominik Grewe',
John Nham?, Nal Kalchbrenner!, Ilya Sutskever?, Timothy Lillicrap!, Madeleine Leach!, Koray Kavukcuoglu',

Thore Graepel' & Demis Hassabis'

45

Traditional Algorithm: Monte Carlo Tree Search

Repeated X times

Selection |—— Expansion ——f{ Simulation —]{ Backpropagation

The selection function is
applied recursively until
a leaf node is reached

O O

One simulated

The result of this game is
game is played

backpropagated in the tree

Policy Network and Value Network

Policy Network S
P:S — Q. Given the state of the game, produces a distribution of

actions to take. Uses convolutional neural networks to learn
representations of the game.

Value Network '

V:S — R. Given the state of the game, produces a single scalar
value: the value of the state, or the chances of winning in that state.
Uses convolutional neural networks to learn representations of the

game.

These are obviously great to have, but how do we train them?

47

Policy Gradient

Answer: Pretraining + Reinforcement Learning

AlphaGo’s policy network is first trained on a dataset of 30 million
human games, to predict what human professionals would play in
each position. This is a supervised learning task.

This isn't sufficient: we need to use reinforcement learning, through
self play. We play against a randomly selected previous iteration of
the policy network.

The reward of each terminal state is +1 or -1, and 0 for all
nonterminal states. Update policy with stochastic gradient ascent on
the policy gradient.

48

Training Value Network

After training the policy network through self play, we use
reinforcement learning to train the value network, by having it
predict the results of games where the policy gradient plays itself.

Problem: Cannot use multiple states from the same game to train, as
it leads to overfitting. Successive positions are highly correlated, and
share the same terminal position, thus games would be memorized
instead of learned.

Solution: Only use 1 move from a single game. Play 30 million
distinct games just to create a training set for the value network. Use
millions of dollars in compute.

49

AlphaGo’s MTCS

a Selection b Expansion c Evaluation d Backup
may Q+ulP)

Q+ulP) max

YN N :

)
Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation is evaluated in two ways: using the value network vg; and by running
traverses the tree by selecting the edge with maximum action value Q, arollout to the end of the game with the fast rollout policy p, then
plus a bonus u(P) that depends on a stored prior probability P for that computing the winner with function r. d, Action values Q are updated to
edge. b, The leaf node may be expanded; the new node is processed once track the mean value of all evaluations r(-) and vg(-) in the subtree below
by the policy network p, and the output probabilities are stored as prior that action.

probabilities P for each action. ¢, At the end of a simulation, the leaf node

50

Evaluating Pe

a b c
3,500 3,500 3,500
3,000 3,000 3,000
2,500 z I 2,500 2,500
2 2000 2,000 2,000
k] =
8 1500 1,500 1,500
1,000 1,000 1,000
500 sk 500 500
0 I 0 o
g3 ¢ g g2z Rollouts @ @ . . Threads 1 2 4 8 1632 40— 49— 12 24 40 64
g58 z 2 =8 9 Value network @ ° o o GPUS ———g——— 1 2 4 8 6112176280
g° ° g Policy network @ @ @ . e | B |
H Single machine Distributed

51

Attention Is All You Need

Attention Is All You Need

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* Lukasz Kaiser*
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin*
illia.polosukhin@gmail.com

Ushered in revolutionary NLP technology in last 2 years.

52

NLP before Transformers

- Seq2Seq encoder-decoder networks.
- Sequential data is modelled with RNNs and LSTMs.

. ®» O @ g;
1
IA}—>|A}—>|A\—>! 1

¥
/S S SR G G

- But what about long term dependence?

|

53

Long Term Dependence

BLEU scores]
BLEU = bilingual evaluation understudy

An algorithm for evaluating the quality of text which has been
machine-translated from one natural language to another. Score
between 0 to 1.

BLEU scores for long sentences (> 30 words) using RNN / LSTM
models are much lower, because they still struggle to maintain long
term dependence in a sentence (words far apart are less connected
in RNN/LSTM model).

Example: When | visited France, | had a lot of fun with my friends, my
parents, my professors, and the locals, even though | am cannot
fluently speak <>.

54

Attention

Intuition: Humans don't read the entire sentence before translating.
They translate blocks at a time based on what part of the sentence
they're paying attention to. The words that they pay attention to can
come from much earlier or much later.

55

Attention

(- |
The attention mechanism decoder decoder decoder decoder I

@y, @z, A3, Ay

€1,€2,€3,C4

S0:51,52:53 hy, by, ha, hy hy h, hy hy

I encoder |—h| encoder H encoder |—>| encoder I

6 & o &

56

Attention

Attention function: Maps a query and a set of key-value pairs to an
output.

Output: weighted sum of the values, where the weight assigned to
each value is computed by a compatibility function of the query with
the corresponding key.

Query * KeyY Score Softmax Value Softmax * Value X Softmax* Value
n (Attention layer output)
1“1 mm 5 =130 0.92

1*study mm «] = 50 0.05
1*at mm« =20 0.02
10 0.01
30 0.02
0.70

20 0.03
70 0.25

I *school mH *

study study *| HE *

study * study HE

study *at H «

study * school

30 0.03
50 0.10
920 0.80
40 [Xorg

at at*l
at * study

at*at

at * school

RNN + Attention

mnmn e \ o | o o

t t

T t
-
HE == [|

| study at school

58

The big question.

RNNs have a long compute chain - difficult to parallelize for training.
GPUs are only efficient at performing computations in parallel.

Do you really need to use the RNN?

59

Attention is all you need.

60

Attention is all you need.

eso gongbuhey <end>

t

[1]
+
[N |

? ’ , , <start> gongbuhey
ENE NN EEE EEE

+ + +

ENE Em

I study at
Reference: Attention is all you need (https:/arxiv.org/pdi/1706.03762.pdf)

Transformers

Output
Probabilities

Add & Norm

Feed
Forward

Add & Norm

Feed
Forward Nx
N | —~(AddE Nom)
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
\ —
Positional A Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs QOutputs

(shifted right)

Figure 1: The Transformer - model architecture.

62

Positional Encoding

- The model still needs to know the position of each word -
otherwise, how will it decide word order?

- Solution: Positional encoding. Apply a "position vector” for each
word to the input — which depends on the order of the word.

63

Multi-Head Attention

QK™
Attention(Q, K, V) = softmax(———)V
Vdg

MultiHead(Q, K, V') = Concat(heady, ..., headh)WO
where head; = Attention(QW2, KWXK, VW)

‘Where the projections are parameter matrices WiQ € Rtmoser X K g Rmosa X PV g Refmocei X dw
and WO ¢ RhdvX dmod

- Instead of only 1 attention function, instead store several (8).

64

Self Attention

Layer:| 5 §| Attention:| Input - Input]

The_
animal_
didn_

street_
because_

it_ /

The_
animal_
didn_

t
cross_
the_

street_
because_

65

Trained on WMT 2014 English-German dataset consisting of about 4.5
million sentence pairs with 8 NVIDIA P100 GPUs for 12 hours (base
model) or 3 days (large model), with the Adam optimizer + dropout.

Outperforms the best previously reported models (including
ensembles) by more than 2.0 BLEU, establishing a new
state-of-the-art BLEU score of 28.4!

All while using significantly less training cost compared to other
models.

66

	Introduction
	AlexNet
	Generative Adversarial Networks
	GANs since 2014

	Adam: A Method for Stochastic Optimization
	AlphaGo
	Attention Is All You Need

