
Landmark Papers of the 2010s
Brief Primer to Modern Deep Learning

Ben Zhang
February 5th, 2020

UWDSC Reading Group

Introduction

A trend

1

A timeline of DL innovation

• 1812: Bayes’ Theorem
• 1913: Markov Chains
• 1957: Perceptrons (early 1 layer neural network)
• 1982: Recurrent Neural Networks (Hopfield)
• 1986: Backpropogation
• 1989: Reinforcement Learning
• 1995: Convolutional Neural Networks
• 1997: LSTMs
• 2004: Deep Belief Networks
• 2006: Autoencoders

Around 2005 marks the end of the AI winter – into the golden age!

2

Papers We Will Look At Today

1. ImageNet Classification with Deep Convolutional Neural
Networks,
Krizhevsky, et. Al (NIPS 2012)

2. Generative Adversarial Networks,
Goodfellow et. Al (NIPS 2014)

3. Adam: A Method for Stochastic Optimization,
Kingma et. Al (ICLR 2015)

4. Mastering the game of Go with Deep Neural Networks & Tree
Search,
Deepmind (Nature 2016)

5. Attention Is All You Need,
Vaswani et. Al (2017)

3

AlexNet

AlexNet (2012)

The dawn of a new era for computer vision.

4

ImageNet

A 10+ million image dataset released in 2009, organized by the
Stanford Vision Lab. Pictures of objects tagged with a WordMap –
contains hundreds of pictures per word class.

5

ILSVRC

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is a
challenge hosted by ImageNet each year, which usually features
some image classification challenge. It is the Olympics of Computer
Vision.

• 1000 classes
• 1.2 million training images (256 by 256 pixels cropped from
ImageNet).

• 50K validation set, 150K test set.
• Labelled with Mechanical Turk.

6

AlexNet (2012)

A deep convolutional neural network model trained on GPUs! While
not the first deep CNN, see: LeNet-5 (LeCun, 1998), this result was
such a breakthrough that it propelled CNNs’ popularity into every
single computer vision task.

They were the winning submission to the ILSVRC 2012 competition!
Shattered the previous state of the art image classification
benchmarks.

• ILSVRC 2012 Top-5 error rate of 15%, compared to runner-up 26%.

7

AlexNet Classification

8

AlexNet Innovations

• Deeeeeep Learning.
• GPU for training.
• ReLU:
– Faster convergence compared to saturating non-linearity.

• Dropout:
– Less overfitting

• Overlap pooling
• Stochastic batch gradient descent – fixed weight decay and
momentum for optimizer.

• Trained on two GTX580 GPUs for about a week!

9

Architecture

The split in this diagram denotes the split between the two GPUs.

10

Architecture

• Input: (224, 224, 3) dimensional vector.
• 8 layers: 5 convolutional layers + 3 fully connected layers.
• Number of kernels per layer: 96, 256, 384, 384, 256.
• Dimensions of kernels per layer:
(11, 11, 3), (5, 5, 48), (3, 3, 256), (3, 3, 192), (3, 3, 192)

• Fully connected layer units: 4096, 4096, 1000.
• In total, 660K units, 61M parameters, and over 600M connections.

Today, we can reduce the number of parameters in AlexNet by 10x
and reach same accuracy.

11

Convolutional Kernels

12

Successors to AlexNet

• VGG-16 and VGG-19
• GoogLeNet
• ResNet

• Winner of ILSVRC 2015
• Skip layer allows for super deep models without overfitting.
• 152 layer version submitted for competition.
• 3.7% top-5 error rate for ImageNet Classification.

13

Progress

14

Generative Adversarial Networks

Generative Adversarial Nets (2014)

”The most exciting idea in Deep Learning in decades.” – Yann LeCun

15

Generative Models

The Problem: Instead of performing classification or regression, we
want to generate data from a distribution.

• Density Estimation: Learn the underlying density function of the
sample data.

• Sample Generation: Sample points from the underlying density
function.

16

Generative Models

17

Overview

18

Generative Adversarial Networks

Two players (Neural Networks) that are adversarial to each other.

• The Discriminator, D: A classifier which takes a data point, and
determines whether it is generated by G, or drawn from the true
distribution.

• The Generator, G: generates adversarial examples from the
sample distribution against the discriminator.

19

Example: Counterfeit Money vs Police

Consider this analogy in the real world.

• Counterfeiters create fake coins that try to look as real as
possible.

• Police try to determine whether coins are real or fake.
• The two entities learn from each other, producing better coins,
and better detectors.

What does this model converge to?

20

Overview

21

Discriminator

D : X→ {0, 1}, where is a neural network which takes in a data point
from the domain X and determines whether it is real or not.

D is trained such that it maximizes the probability of labelling the
inputs correctly. Its objective is to maximize:

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1− D(G(z)))]

Equivalently, we can set the loss function to be:

J(D) = −Ex∼pdata(x)[logD(x)]− Ez∼pz(z)[log(1− D(G(z)))]

This is the Jenson-Shannon divergence of the true distribution and
G(z).

22

Generator

G : Z→ X, where Z is the latent domain, for example Z := [0, 1]d.

G is the generator network, which takes some random noise z ∈ Z
and produced G(z) ∈ X, a ”fake data point”. If X is the domain of
pictures then G(z) would be a generated picture.

During training, we want G to minimize D’s accuracy when it comes to
generated samples. Its objective function is:

J(G) = log(1− D(G(z)))

There are a lot of variations that produce similar optimal values, with
stronger gradients, eg.

J(G) = −J(D)

23

Z-space

While many examples of GANs treat the z vector that is inputted into
G as a random vector, we can consider it as a latent space.

Specifically, we can perform arithmetic on the latent space vectors.
Thus, we can see Z as a low dimensional latent representation of X
where important features are preserved on linear relations.

24

Minimax

Then, training the two models together, we have the following
minimax value function:

min
G

max
D
V(D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1− D(G(z)))] (1)

Note that the order matters!

min
G

max
D
V(D,G) ̸= max

D
min
G
V(D,G)

The latter suffers from mode collapse: all mass converges to the
most likely point.

25

A Diagram

26

The Original Algorithm

27

The Optimal Discriminator

For a fixed G, the optimal discriminator is:

D∗(x) = pdata(x)
pdata(x) + pmodel(x)

An intuitive result, but proven in the paper.

Then, the optimal point for our GAN is achieved when minimizing
C(G) =

Ex∼pdata(x)
[
log

pdata(x)
pdata(x) + pmodel(x)

]
+Ez∼pz(z)

[
log

pmodel(x)
pdata(x) + pmodel(x)

]

28

Equivalence of C(G) with Jenson-Shannon divergence

With a bit of algebra, we can show that C(G)

= Ex∼pdata(x)
[
log

pdata(x)
pdata(x) + pmodel(x)

]
+ Ez∼pz(z)

[
log

pmodel(x)
pdata(x) + pmodel(x)

]
= − log(4) + KL

(
pdata ||

pmodel + pdata
2

)
+ KL

(
pmodel ||

pmodel + pdata
2

)
= − log(4) + 2 ∗ JS(pdata || pmodel)

Since the Jenson-Shannon divergence is always non-negative, and
only zero of pdata = pmodel, it follows that the optimal value exists
only when pdata = pmodel.

This is an elegant proof of this fact: at the optimal value, assuming
perfect training, the GAN will converge to a perfect generator that is
indistinguishable from the true distribution.

29

Conditional GANs

• Instead of only z, we also pass in an auxiliary information into G
and D.

• For example, we can pass in the class label.

30

Text to Image Generation with Conditional GANs

From Generative Adversarial Text to Image Synthesis, Reed et. Al 2016.

31

Generating Faces with DC-GANs, NVIDIA 2018

32

DC-GANs Faces

33

Adam: A Method for Stochastic
Optimization

Adam (2014)

The most popular optimization solver today.

34

What are Optimization Algorithms?

• Machine Learning is very concerned with a specific problem:
given a function f : S→ R, find argθ∈Smin f(θ).

• The f that Machine Learning practitioners want to optimize is the
loss function.

• Oǒten, we can make assumptions about f: eg. f is continuous, f is
convex, f is analytic. There are entire CO courses dedicated to
optimization under assumptions.

• Finally, sometimes, there is an analytic solution. Example:

θ = (XTX)−1XTy

35

What are Optimization Algorithms?

• In Deep Learning, there is almost never ever an analytic
solution. Functions defined by neural networks are far too
complex, and the manifolds are wacky.

• Instead, we try to find a solution using numerical methods –
algorithms that try to approximate the minimum through a
systematic convergence test.

• The most famous class of numerical methods is Gradient
Descent.

36

Gradient Descent

37

Gradient Descent

The learning rate α matters a lot on whether gradient descent
converges.

38

What is Adam?

Adam combines two existing concepts:

• Momentum
• RMSProp

Momentum
Instead of using just the gradient, instead, use an exponentially
weighted moving average (EWMA) of your last few gradients.

RMSProp
Keep weights for components of direction, and re-weight gradient
component-wise based on square root of second derivative.

39

Momentum

40

Root Mean Squared Prop

41

Adam Algorithm

42

Results

Faster convergence for loss functions during training, saving time
and money.

43

More results

44

AlphaGo

AlphaGo

45

Traditional Algorithm: Monte Carlo Tree Search

46

Policy Network and Value Network

Policy Network
P : S→ Q. Given the state of the game, produces a distribution of
actions to take. Uses convolutional neural networks to learn
representations of the game.

Value Network
V : S→ R. Given the state of the game, produces a single scalar
value: the value of the state, or the chances of winning in that state.
Uses convolutional neural networks to learn representations of the
game.

These are obviously great to have, but how do we train them?

47

Policy Gradient

Answer: Pretraining + Reinforcement Learning

AlphaGo’s policy network is first trained on a dataset of 30 million
human games, to predict what human professionals would play in
each position. This is a supervised learning task.

This isn’t sufficient: we need to use reinforcement learning, through
self play. We play against a randomly selected previous iteration of
the policy network.

The reward of each terminal state is +1 or -1, and 0 for all
nonterminal states. Update policy with stochastic gradient ascent on
the policy gradient.

48

Training Value Network

Aǒter training the policy network through self play, we use
reinforcement learning to train the value network, by having it
predict the results of games where the policy gradient plays itself.

Problem: Cannot use multiple states from the same game to train, as
it leads to overfitting. Successive positions are highly correlated, and
share the same terminal position, thus games would be memorized
instead of learned.

Solution: Only use 1 move from a single game. Play 30 million
distinct games just to create a training set for the value network. Use
millions of dollars in compute.

49

AlphaGo’s MTCS

50

Evaluating Performance

51

Attention Is All You Need

Attention Is All You Need

Ushered in revolutionary NLP technology in last 2 years.

52

NLP before Transformers

• Seq2Seq encoder-decoder networks.
• Sequential data is modelled with RNNs and LSTMs.

• But what about long term dependence?

53

Long Term Dependence

BLEU scores
BLEU = bilingual evaluation understudy
An algorithm for evaluating the quality of text which has been
machine-translated from one natural language to another. Score
between 0 to 1.

BLEU scores for long sentences (> 30 words) using RNN / LSTM
models are much lower, because they still struggle to maintain long
term dependence in a sentence (words far apart are less connected
in RNN/LSTM model).

Example: When I visited France, I had a lot of fun with my friends, my
parents, my professors, and the locals, even though I am cannot
fluently speak <>.

54

Attention

Intuition: Humans don’t read the entire sentence before translating.
They translate blocks at a time based on what part of the sentence
they’re paying attention to. The words that they pay attention to can
come from much earlier or much later.

55

Attention

56

Attention

Attention function: Maps a query and a set of key-value pairs to an
output.

Output: weighted sum of the values, where the weight assigned to
each value is computed by a compatibility function of the query with
the corresponding key.

57

RNN + Attention

58

The big question.

RNNs have a long compute chain – difficult to parallelize for training.
GPUs are only efficient at performing computations in parallel.

Do you really need to use the RNN?

59

The answer: No.

Attention is all you need.

60

Attention is all you need.

61

Transformers

62

Positional Encoding

• The model still needs to know the position of each word –
otherwise, how will it decide word order?

• Solution: Positional encoding. Apply a ”position vector” for each
word to the input – which depends on the order of the word.

63

Multi-Head Attention

• Instead of only 1 attention function, instead store several (8).

64

Self Attention

65

Trained on WMT 2014 English-German dataset consisting of about 4.5
million sentence pairs with 8 NVIDIA P100 GPUs for 12 hours (base
model) or 3 days (large model), with the Adam optimizer + dropout.

Outperforms the best previously reported models (including
ensembles) by more than 2.0 BLEU, establishing a new
state-of-the-art BLEU score of 28.4!

All while using significantly less training cost compared to other
models.

66

	Introduction
	AlexNet
	Generative Adversarial Networks
	GANs since 2014

	Adam: A Method for Stochastic Optimization
	AlphaGo
	Attention Is All You Need

