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Purpose

Overview of the important linear algebra concepts 
required for machine learning. 

NOT: A proper introduction to Linear Algebra.
See: 3brown1blue, MATH1(3|4)6, MATH2(3|4)5



Part 1: Establishing the basics



Table of Contents

● Vectors and Matrices
● Norms
● Dot Product
● Matrix Operations
● Transpose and Inverse
● Linear Independence
● Rank
● Determinants
● Eigenvalues



Thinking in more dimensions



The Curse of Dimensionality



Scalars, Vectors, Matrices

● Scalars are single values.
○ Could be from natural numbers, quotients, real numbers.
○ For the most of this lecture, we will use the real numbers.

● Vectors are ordered arrays of values.
○ Indices numbered 1 to n.
○ Column-wise notation, can consider as n by 1 matrix.

● Matrices are 2-D arrays of values.
○ Has height and width - height comes first in notation.
○ Not necessarily square.



Intuition on Vectors

● Interpretation 1: Points in n-dimensional space.
○ Example: word2vec

● Interpretation 2: Linear movement in n-dimensional space
○ Example: word2vec 





Addition on Vectors

● Add element-wise.
● Can only add vectors of equal dimensions.
● Associative and commutative.
● Same with matrices. 



Norms

● Many different types, serve as a “measure of distance” for vectors.
● Must satisfy the following conditions:



Dot Product

● Takes 2 vectors of the same dimension, returns a scalar.
● A measure of the “alignment” between two vectors, scaled by the lengths.
● Two vectors with dot product zero are orthogonal to each other.



Intuition on Matrices

● Interpretation 1: Ordered collection of vectors (vector of vectors).

● Interpretation 2: Linear transformations on vectors.



Matrix Multiplication

● Multiplying (m, n) matrix with (n, p) matrix yields (m, p) matrix.
● Associative, but not commutative!
● Satisfies the distributive property.
● Identity Matrix, I



Matrices as linear functions on vectors

● Multiplying a m x n matrix into a n x 1 vector yields a m x 1 vector.
● We can think of this as a linear function from n-dimensional to m-dimensional 

space.
○ Also need f(0) = 0





Transpose



Inverse of a Matrix

● Not all matrices are invertible.
○ All invertible matrices are square (dimensional), but not all square matrices are invertible.
○ Square matrices which are not invertible are called singular.
○ Singular matrices have determinant 0, which we will not cover.

● Finding inverses is computationally expensive: usually O(n^3)



Solving systems of linear equations



Special Matrices

● Diagonal Matrices

● Orthogonal Matrices
○ Orthonormal vectors

● Symmetric Matrices



Eigenvectors, Eigenvalues

● All scaled eigenvectors are still eigenvectors.
● N by N matrix always has N complex eigenvalues, up to multiplicity
● Symmetric matrices always have N real eigenvalues





Part 2: Applications to ML



Table of Contents

● Eigendecomposition
● Singular Value Decomposition
● Principal Component Analysis

If time permits,

● Linear Regression
● Support Vector Machines



Eigendecomposition

● In the same way that composites can be decomposed into primes, matrices 
can be decomposed. A must be an n by n matrix.

● Suppose A has n linearly independent eigenvectors, each with an associated 
eigenvalue.



Eigendecomposition 

● If A is symmetric, there are great properties on the for the 
eigendecomposition.

● All the eigenvectors are orthonormal, so Q is orthogonal. 
● All the eigenvalues are now real.





Useful facts from deriving the Eigenvalues

● A matrix is singular if and only if some eigenvalue is 0
○ The determinant is the product of the eigenvalues

● If any two eigenvectors share the same eigenvalue, then any vector on the 
span of the eigenvectors is also an eigenvector, with the same eigenvalue.
○ Therefore, even if the eigenvalues are not unique, we can choose a orthogonal set of 

eigenvectors.

● By convention, we usually sort the eigenvalues from largest to smallest.



Singular Value Decomposition

● SVD is another way to factorize matrices.
○ Doesn’t need the matrix to be a square.

● Every real matrix has a singular value decomposition.





Singular Value Decomposition, part 2

● U, V are both orthogonal.
● The diagonal values in D are known as the singular values of A.

○ These are the square roots of the eigenvalues of A^T * A.

● Columns of U are the left singular vectors, columns of V are the right singular 
vectors.



Covariance matrix

● If each Xi is independent, then the covariance matrix is diagonal.
● Positive Semidefinite: all the eigenvalues are non-negative.
● Covariance matrix written in terms of input data, n by p:





Principal Component Analysis



Principal Component Analysis



Principal Component Analysis

● Powerful dimensionality reduction technique.
○ Want to find principal components: low dimensional orthogonal vectors which capture as 

much variance from the high dimensional data as possible.
○ Want some transform matrix T, which takes high dimensional data and produces low 

dimensional output.

● Consider input data X, which is n by p matrix.
○ Want eigenvalues and eigenvectors of the covariance matrix, ordered by size of eigenvalue.
○ SVD on X: 

● Then, 



Principal Component Analysis (Eigenfaces)

What each principal component looks like



Principal Component Analysis (Eigenfaces pt. 2)

What only the top N principal components looks like



Part 3: Extra Stuff



Measures

● Trace
● Determinant



Other Decompositions

● LU decomposition
● QR decomposition
● Cholesky decomposition



Pseudo-inverse

● Not all matrices have inverses
○ singular matrix
○ non-square matrix

● Moore-Penrose pseudo-inverse is the “closest thing”


