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Purpose

Overview of the important linear algebra concepts
required for machine learning.

NOT: A proper introduction to Linear Algebra.
See: 3brown1blue, MATH1(3|4)6, MATH2(3]4)5
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Part 1: Establishing the basics



Table of Contents

Vectors and Matrices
Norms

Dot Product

Matrix Operations
Transpose and Inverse
Linear Independence
Rank

Determinants
Eigenvalues



Thinking in more dimensions




The Curse of Dimensionality

. Ay



Scalars, Vectors, Matrices

e Scalars are single values. N.Q,E

o Could be from natural numbers, quotients, real numbers.
o For the most of this lecture, we will use the real numbers.

e Vectors are ordered arrays of values. r" 5
o Indices numbered 1 to n. x= 3| e B? ry=09,r3 =2
o Column-wise notation, can consider as n by 1 matrix. 2
e Matrices are 2-D arrays of values.
o Has height and width - height comes first in notation. 2 3 _
A=|-4 1| eR™ Ajp=3

o  Not necessarily square.




Intuition on Vectors 2

.
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e Interpretation 1: Points in n-dimensional space.

o Example: word2vec Z-coordinate

X-coordinat:

.
>

/ Y-coordinate
X

e Interpretation 2: Linear movement in n-dimensional space

o Example: word2vec Ya
a, (a;,3,)
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t-SNE visualizations of word embeddings. Left: Number Region; Right:

Jobs Region. From Turian et al. (2010), see complete image.
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Addition on Vectors

Add element-wise.

Can only add vectors of equal dimensions.
Associative and commutative.

Same with matrices.

6| + | 8| =2
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Norms

e Many different types, serve as a “measure of distance” for vectors.
e Must satisfy the following conditions:

N,
v

o flx)=0=x=0

~
>

e f(x+vy) < f(x)+ f(y) (the triangle inequality)
o Va € R, f(ax) = |a|f(x) >

[ (ZI%I”)I%

i




Dot Product

e Takes 2 vectors of the same dimension, returns a scalar.
e A measure of the “alignment” between two vectors, scaled by the lengths.
e Two vectors with dot product zero are orthogonal to each other.




Intuition on Matrices

e Interpretation 1: Ordered collection of vectors (vector of vectors).

e Interpretation 2: Linear transformations on vectors.




Matrix Multiplication

Multiplying (m, n) matrix with (n, p) matrix yields (m, p) matrix.
Associative, but not commutative!

Satisfies the distributive property.

|dentity Matrix, |

1237 |75 _ [58




Matrices as linear functions on vectors

e Multiplying a m x n matrix into a n x 1 vector yields a m x 1 vector.
e We can think of this as a linear function from n-dimensional to m-dimensional

space.
o Alsoneedf(0)=0

b
atb

flu+v) = f(u)+ f(v)
f(cu) = cf(u)







Transpose

- - T
- . I 5 9
1 2 3 4
2 6 10
5 6 7 8| =
3 7 11
9 10 11 12
- - 4 8 12

The transpose of a matrix product has a simple form:

(AB) =B'A'".




Inverse of a Matrix

e Not all matrices are invertible.

o Allinvertible matrices are square (dimensional), but not all square matrices are invertible.
o Square matrices which are not invertible are called singular.
o  Singular matrices have determinant 0, which we will not cover.

e Finding inverses is computationally expensive: usually O(n*3)

AA ' =A"1A=1T




Solving systems of linear equations

Ax =0b
A'tAz=A"b
Inw — A—lb




Special Matrices

e Diagonal Matrices 18 B
0 4 0
0 0 -3
0 0 0

e Orthogonal Matrices
o  Orthonormal vectors

e Symmetric Matrices




Eigenvectors, Eigenvalues

An eigenvector of a square matrix A is a nonzero vector v such that multi-
plication by A alters only the scale of v:

Av = ). (2.39)

The scalar A is known as the eigenvalue corresponding to this eigenvector. (One
can also find a left eigenvector such that v' A = Av', but we are usually
concerned with right eigenvectors.)

e All scaled eigenvectors are still eigenvectors.
e N by N matrix always has N complex eigenvalues, up to multiplicity
e Symmetric matrices always have N real eigenvalues




§2
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Part 2: Applications to ML



Table of Contents

e Eigendecomposition
e Singular Value Decomposition
e Principal Component Analysis

If time permits,

e Linear Regression
e Support Vector Machines




Eigendecomposition

e Inthe same way that composites can be decomposed into primes, matrices
can be decomposed. A must be an n by n matrix.

Suppose A has n linearly independent eigenvectors, each with an associated
eigenvalue.

— (V17V27°"7V’n,)

()\17 >\27 SR 7>"n,)
A = Vdiag(A\)V 1

A




Eigendecomposition

e If Ais symmetric, there are great properties on the for the

eigendecomposition.
e All the eigenvectors are orthonormal, so Q is orthogonal.

e All the eigenvalues are now real.

Q= (v, Vve,...,Vp)

A= diag()\l, )\2, cee )\n)
A = QAQ
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Figure 2.3: An example of the effect of eigenvectors and eigenvalues. Here, we have
a matrix A with two orthonormal eigenvectors, v'*) with eigenvalue A1 and v'® with
eigenvalue \o. (Left)We plot the set of all unit vectors w € R? as a unit circle. (Right)We
plot the set of all points Aw. By observing the way that A distorts the unit circle, we
can see that it scales space in direction v by ;.




Useful facts from deriving the Eigenvalues

e A matrix is singular if and only if some eigenvalue is 0
o The determinant is the product of the eigenvalues

e If any two eigenvectors share the same eigenvalue, then any vector on the
span of the eigenvectors is also an eigenvector, with the same eigenvalue.

o Therefore, even if the eigenvalues are not unique, we can choose a orthogonal set of
eigenvectors.

e By convention, we usually sort the eigenvalues from largest to smallest.




Singular Value Decomposition

e SVD is another way to factorize matrices.
o Doesn't need the matrix to be a square.

e Every real matrix has a singular value decomposition.

A=UDV'. (2.43)

Suppose that A is an m X n matrix. Then U is defined to be an m X m matrix,
D to be an m X n matrix, and V to be an n X n matrix.




= lllustration of SVD dimensions and
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Singular Value Decomposition, part 2

A=UDV'.
e U,V are both orthogonal.
e The diagonal values in D are known as the singular values of A.
o These are the square roots of the eigenvalues of AT * A.
e Columns of U are the left singular vectors, columns of V are the right singular

vectors.

We can actually interpret the singular value decomposition of A in terms of
the eigendecomposition of functions of A. The left-singular vectors of A are the
eigenvectors of AA'. The right-singular vectors of A are the eigenvectors of A" A.
The nonzero singular values of A are the square roots of the eigenvalues of A’ A.
The same is true for AA".




Covariance matrix

X = (X1, Xa,...,X,)7T

Kxx; = cov|X;, Xj| = E|(X; — E[X;])(X; — E[Xj])]

e If each Xi is independent, then the covariance matrix is diagonal.
e Positive Semidefinite: all the eigenvalues are non-negative.
e Covariance matrix written in terms of input data, n by p:

C=X'X/(n-1)







Principal Component Analysis
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Principal Component Analysis
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Principal Component Analysis

e Powerful dimensionality reduction technique.

o  Want to find principal components: low dimensional orthogonal vectors which capture as
much variance from the high dimensional data as possible.

o Want some transform matrix T, which takes high dimensional data and produces low
dimensional output.

e Consider input data X, which is n by p matrix.
o Want eigenvalues and eigenvectors of the covariance matrix, ordered by size of eigenvalue.

o SVDonX: X — UEWT
T =XW
e Then, = USWI'wW

=UX



Principal Component Analysis (Eigenfaces)

What each principal component looks like




Principal Component Analysis (Eigenfaces pt. 2)

What only the top N principal components looks like
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Part 3; Extra Stuff



Measures

e Trace
e Determinant




Other Decompositions

e LU decomposition
e QR decomposition
e Cholesky decomposition




Pseudo-inverse

e Not all matrices have inverses

o  singular matrix
o non-square matrix

e Moore-Penrose pseudo-inverse is the “closest thing”




