
Generative Adversarial Networks
”The most exciting idea in Deep Learning in decades.”

Ben Zhang

Waterloo Data Science Club

Table of contents

1. Introduction

2. GANs

3. Entropy

4. Variations and Applications

1

Introduction

Generative Models

The Problem: Instead of performing classification or regression, we
want to generate data from a distribution.

• Density Estimation: Learn the underlying density function of the
sample data.

• Sample Generation: Sample points from the underlying density
function.

2

Discriminative vs Generative

Discriminative Model
• Find P(y|x).
• Given a data point x, what is
the most likely value of y?

• Easy to model.
• Eg. Logistic Regression, SVMs,
etc.

Generative model
• Find P(x, y).
• What is the most likely pair
(x, y) that we can observe?

• Needs lots of data to get a
good approximation.

• Eg. Naive Bayes Classifier,
Gaussian Mixture Models

Consider a true distribution that draws uniformly from
(0, 0), (0, 0), (1, 0), (1, 1). What is P(x, y) and P(y|x)?

3

Generative Models

4

Adversarial Training

A widely used phrase to describe many many things.

“Training a model in a worst-case scenario, with inputs
chosen by an adversary” - Ian Goodfellow, 2016

5

GANs

Overview

6

Generative Adversarial Networks

Two players (Neural Networks) that are adversarial to each other.

• The Discriminator, D: A classifier which takes a data point, and
determines whether it is generated by G, or drawn from the true
distribution.

• The Generator, G: generates adversarial examples from the
sample distribution against the discriminator.

7

Example: Counterfeit Money vs Police

Consider this analogy in the real world.

• Counterfeiters create fake coins that try to look as real as
possible.

• Police try to determine whether coins are real or fake.
• The two entities learn from each other, producing better coins,
and better detectors.

What does this model converge to?

8

Discriminator

D : X→ {0, 1}, where is a neural network which takes in a data point
from the domain X and determines whether it is real or not.

D is trained such that it maximizes the probability of labelling the
inputs correctly. Its objective is to maximize:

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1− D(G(z)))]

Equivalently, we can set the loss function to be:

J(D) = −Ex∼pdata(x)[logD(x)]− Ez∼pz(z)[log(1− D(G(z)))]

This is the Jenson-Shannon divergence of the true distribution and
G(z).

9

Generator

G : Z→ X, where Z is the latent domain, for example Z := [0, 1]d.

G is the generator network, which takes some random noise z ∈ Z
and produced G(z) ∈ X, a ”fake data point”. If X is the domain of
pictures then G(z) would be a generated picture.

During training, we want G to minimize D’s accuracy when it comes to
generated samples. Its objective function is:

J(G) = log(1− D(G(z)))

There are a lot of variations that produce similar optimal values,
with stronger gradients, eg.

J(G) = −J(D)

10

Z-space

While many examples of GANs treat the z vector that is inputted into
G as a random vector, we can consider it as a latent space.

Specifically, we can perform arithmetic on the latent space vectors.
Thus, we can see Z as a low dimensional latent representation of X
where important features are preserved on linear relations.

11

Minimax

Then, training the two models together, we have the following
minimax value function:

min
G
max
D
V(D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1− D(G(z)))] (1)

Note that the order matters!

min
G
max
D
V(D,G) ̸= max

D
min
G
V(D,G)

The latter suffers from mode collapse: all mass converges to the
most likely point.

12

A Diagram

13

The Original Algorithm

14

The Optimal Discriminator

For a fixed G, the optimal discriminator is:

D∗(x) = pdata(x)
pdata(x) + pmodel(x)

An intuitive result, but proven in the paper.

Then, the optimal point for our GAN is achieved when minimizing
C(G) =

Ex∼pdata(x)
[
log pdata(x)

pdata(x) + pmodel(x)

]
+Ez∼pz(z)

[
log pmodel(x)

pdata(x) + pmodel(x)

]

15

Equivalence of C(G) with Jenson-Shannon divergence

With a bit of algebra, we can show:

C(G) = Ex∼pdata(x)
[
log pdata(x)

pdata(x) + pmodel(x)

]
+ Ez∼pz(z)

[
log pmodel(x)

pdata(x) + pmodel(x)

]
= − log(4) + KL

(
pdata ||

pmodel + pdata
2

)
+ KL

(
pmodel ||

pmodel + pdata
2

)
= − log(4) + 2 ∗ JS(pdata || pmodel)

Sicne the Jenson-Shannon divergence is always non-negative, and
only zero of pdata = pmodel, it follows that the optimal value exists
only when pdata = pmodel.

This is an elegant proof of this fact: at the optimal value, assuming
perfect training, the GAN will converge to a perfect generator that is
indistinguishable from the true distribution. 16

Entropy

Entropy

An abstract idea from information theory introduced by Claude
Shannon. What is the smallest number of bits, on average, needed
to encode the given distribution?

Consider sending a message from A to B through a channel, while
trying to encode 4 possible messages.

What if the possible messages occurs with different probabilities?

17

Entropy Formula

The entropy of probability distribution P, which we also denote as
the density function, is given by

H(P) = Ex∼P[− logP(x)]

So, if P is a a distribution over a continuous variable, then:

H(P) = −
∫
P(x) logP(x)dx

And if discrete then:

H(P) = −
∑
x
P(x) logP(x)

18

Example: Entropy of a Fair Die

• What is the entropy of a fair 6 sided die?

•

H(P) = −
6∑
i=1

1
6 log2

1
6 = log2(6) ≈ 2.585

19

Example: Entropy of a Fair Die

• What is the entropy of a fair 6 sided die?
•

H(P) = −
6∑
i=1

1
6 log2

1
6 = log2(6) ≈ 2.585

19

Cross Entropy

Familiar concept in statistics, eg. for calculating binary classification
loss.

Given an approximate distribution Q, how many bits of information
do we need to encode P?

H(P,Q) = Ex∼P[− logQ(x)]

Note: Cross Entropy ≥ Entropy, with equality if and only if P = Q.

20

Example: Cross Entropy of a Fair Die

• Assume that we did not have a fair die, but we had a fair coin
instead. We model the fair die by flipping the coin 3 times. Of
the 8 outcomes, we assign 2 outcomes to 1 and 2, and only 1
outcome to 3, 4, 5, 6. What is the cross entropy of this
approximate distribution compared to the true distribution?

•

H(P,Q) = −
2∑
i=1

1
6 log2

1
4 −

6∑
i=3

1
6 log2

1
8

=
1
3 log2(4) +

2
3 log2(8) =

8
3 ≈ 2.667

21

Example: Cross Entropy of a Fair Die

• Assume that we did not have a fair die, but we had a fair coin
instead. We model the fair die by flipping the coin 3 times. Of
the 8 outcomes, we assign 2 outcomes to 1 and 2, and only 1
outcome to 3, 4, 5, 6. What is the cross entropy of this
approximate distribution compared to the true distribution?

•

H(P,Q) = −
2∑
i=1

1
6 log2

1
4 −

6∑
i=3

1
6 log2

1
8

=
1
3 log2(4) +

2
3 log2(8) =

8
3 ≈ 2.667

21

Kullback–Leibler Divergence

Given distributions P and Q, we want a measure how good Q is at
approximating P.

• Useful as a measure of how good our generator G is at
approximating the sample distribution.

• Compute this by comparing the cross entropy of P and Q against
just the entropy of P.

KL(P || Q) = H(P,Q)− H(P) = Ex∼P
[
log(P)
log(Q)

]

22

KL Divergence Explained

The KL divergence tells us how well the probability distribution Q
approximates the probability distribution P by calculating the
cross-entropy minus the entropy.

23

Example: KL Divergence of 3 coin tosses vs. a die

The KL divergence of using the 3 coins to approximate a fair die is

KL(P || Q) = H(P,Q)− H(P) ≈ 2.667− 2.585 = 0.082

24

Problems with KL Divergence

• Non-symmetric: KL(P || Q) ̸= KL(Q || P).
• Pointwise calculation, blind to closeness in x.

25

Jenson-Shannon Divergence

Addresses the non-symmetry of KL divergence.

JS(P || Q) = 1
2KL

(
P || P+ Q

2

)
+
1
2KL

(
Q || P+ Q

2

)
Note that JS(P || Q) ≥ 0 with equality if and only if P = Q.

26

Variations and Applications

Conditional GANs

• Instead of only z, we also pass in an auxiliary information into G
and D.

• For example, we can pass in the class label.

27

Text to Image Generation with Conditional GANs

From Generative Adversarial Text to Image Synthesis, Reed et. Al 2016.

28

Text to Image Generation with Conditional GANs

From Generative Adversarial Text to Image Synthesis, Reed et. Al 2016.

29

Image to Image with Conditional GANs

30

Generating Faces with DC-GANs, NVIDIA 2018

One of the exciting recent results from 2018 came from NVIDIA.

31

Generating Faces with DC-GANs, NVIDIA 2018

32

Wasserstein GANs

The Wasserstein Metric addresses the point-wise calculation
problem of KL divergence.

The Wasserstein Metric is the solution to the optimal transport
problem. 33

Wasserstein GANs

• Introduced in 2018.
• By using the Wasserstein Metric as the loss function instead of
JS divergence, the loss curve is much smoother for
non-differentiable density functions, so learning is more stable.

34

	Introduction
	GANs
	Entropy
	Variations and Applications

